Определение скорости судов в узлах и перевод в километры в час. Определение скорости судна по режиму оборотов винта

Скорость судна в процессе скоростных испытаний находят различными способами.

Широко распространено определение скорости судна на специальных мерных линиях, оборудованных береговыми секущими (поперечными) створами, расстояние между которыми точно известно. На мерной линии скорость судна определяют, по времени прохождения судном известного расстояния между створами. Этот способ - один из наиболее точных способов измерения скорости судна.

Известное применение имеют также кабельные мерные линии, являющиеся некоторой разновидностью упомянутых мерных линий с поперечными створами. На кабельной мерной линии судно проходит над электрическими кабелями, проложенными на дне фарватера поперек направления движения судна. По кабелям, расстояние между которыми должно быть точно известно, пропускают электрический ток. Специальная электронная аппаратура, установленная на судне, фиксирует момент прохождения судна над кабелем.

В последнее время для измерения скорости судна начали широко использовать различные радионавигационные системы, в частности фазовые.

Скорость судна с относительно меньшей точностью может быть также измерена с помощью собственной судовой радиолокационной станции, которая последовательно через короткие промежутки времени измеряет расстояние до какого-либо определенного объекта, хорошо отражающего радиоволны.

Измерение скорости судна по вееру пеленгов двух предметов или с помощью других штурманских методов, например по маякам, расстояние между которыми известно, не обладает достаточной точностью.

Все перечисленные и многие другие способы, включая и основной способ определения скорости судна на мерной линии, обладают одним общим недостатком, который заключается в том, что скорость судна находят относительно берега, а не воды. При этом на измерения накладывается трудно поддающееся точной оценке влияние ветровых или приливно-отливных течений. Между тем при проведении скоростных испытаний и для дальнейшего использования полученных данных необходимо знать скорость судна относительно окружающей его воды, т. е. при отсутствии течения. Поэтому условия и место проведения испытаний выбирают с таким расчетом, чтобы влияние течения было наименьшим или было направлено по возможности вдоль измерительного участка. В этих случаях пробеги судна на измерительных участках производятся во взаимопротивоположных направлениях и в определенной последовательности.

Несмотря на некоторую сложность определение скорости судна на мерной линии или с помощью радионавигационных средств всегда следует предпочитать измерению скорости с помощью штатных судовых и специальных лагов или гидрометрических вертушек вследствие низкой точности последних, хотя они и измеряют скорость судна непосредственно относительно воды.

Для скоростных испытаний следует использовать мерные линии, расположенные недалеко от места постройки или базирования судна, что позволит сэкономить время и топливо, необходимые для подхода к мерной линии. Кроме того, вследствие расхода топлива при переходе на отдаленную мерную линию трудно обеспечить заданное значение водоизмещения судна.

Глубина воды в районе мерной линии, т. е. ее измерительного участка и на подходе к нему (с обеих сторон), а также в районе поворота судна на обратный курс, должна быть достаточной для того, чтобы исключить влияние мелководья на сопротивление воды движению судна, а следовательно, на его скорость.

Известно , что система волн, создаваемая судном при его движении на мелководье, отличается от волновой системы на глубокой воде и Зависит от режима, характеризуемого так называемым числом Фруда на мелководье

Где σ - скорость судна, м/с; g -ускорение свободного падения, м/с2; Н - глубина фарватера, м.

Изменение характера волнообразования приводит к увеличению или уменьшению сопротивления движению судна и, следовательно, влияет на его скорость.

Одновременно развивается встречное течение воды, увеличивающее скорость обтекания корпуса и, следовательно, сопротивление трения судна. Полное исключение влияния мелководья требует больших глубин мерной линии, которые не всегда удается обеспечить (табл. 1).

Таблица 1. Значения минимальной глубины мерной линии, м

Вследствие этого при определении минимально необходимых глубин обычно исходят из потери скорости, обусловленной влиянием мелководья, составляющей 0,1% от измеряемой величины. Для соблюдения этих условий по волновому сопротивлению должно быть принято значение Frh≥0,5, а по сопротивлению трения
Именно исходя из подобного подхода правила проведения испытаний, разработанные 12-й Международной конференцией опытовых бассейнов, рекомендуют принимать минимально допустимую глубину на мерной линии большей, чем вычисленная по формулам
где В и Т - соответственно ширина и осадка судна. Аналогичный метод рекомендуется и отечественной нормалью ОН-792-68, однако формулы записываются в виде
Мерная линия по возможности должна быть расположена в районе, защищенном от господствующих ветров и морского волнения. Наконец, обязательным условием является наличие достаточного пространства по обоим концам мерной линии, необходимого для свободного маневрирования судна по окончании пробега на измерительном участке, поворота на обратный курс и разгона после поворота.

Допускаемые отклонения глубины воды на подходах к измерительному участку мерной линии не должны превышать ±5%.

Линия пробега судна на мерной линии должна находиться не менее чем в двух-трех милях от прибрежных опасностей. Несоблюдение этого условия создает угрозу того, что судно на больших скоростях, даже в случае правильного маневрирования, при заклинивании руля может сесть на мель.

Удовлетворить всем перечисленным выше требованиям не всегда возможно, поэтому количество полноценных мерных линий весьма ограничено.

В табл. 2 приведены некоторые данные, характеризующие мерные линии ряда иностранных государств . Как видно из таблицы, длина измерительных участков этих линий различна, а глубины многих из них недостаточны для испытаний относительно быстроходных судов.

Таблица 2. Основные характеристики некоторых мерных линий
Мерные линии Длина измерительного участка, миля Истинный курс судна, град Глубина мерной линии во время наиболее сильных отливов, м
Англия
Скельморли
Гао-Лох
Абс-Хид
Полперро
Портланд
Устье р. Тайн
Плимут
1
1
1
1,15
1,43
1
1
0 и 180
156 и 335
111 и 191
86 и 226
134 и 314
161 и 341
93 и 273
65-75
30-40
44-52
31-37
31
20
20-28
Дания
о. Борнгольм 1 - 70-80
Франция
Поркероль-Тайя:
1-й участок
2-й
3-й
Круа-Тревиньон

3,50
2,36
4,70
5,6

48 и 228
48 и 228
48 и 228
120 и 300

70-80
70-80
70-80
40
США
Рокленд 1 0 и 180 -

На рис. 3 приведена схема мерной линии около Рокленда (США), на которой проводилось большое количество скоростных испытаний судов, в том числе исследовательских. Эта линия удовлетворяет большинству из перечисленных выше требований, однако она не защищена от западных ветров и вызываемого ими волнения. Длина измерительного участка равна одной морской миле (1852 м), длина каждого разгонного участка - трем морским милям. Мерная линия оборудована двумя береговыми поперечными (секущими) створами, перпендикулярными измерительному участку. Один из поперечных створов оборудован тремя знаками (щитами), другой - двумя.


Рис. 3. Схема мерной линии в Рокленде (США). Δ - створный знак.

Кроме того, вдоль линии пробега для ориентировки судоводителя расставлены вехи, указывающие границы разгонных и измерительного участков.

Многие мерные линии оборудуются так называемыми ведущими створами, на линии которых располагается измерительный участок. В настоящее время наличие ведущего створа не считается обязательным, хотя все еще существует мнение, что он необходим в тех случаях, когда в районе мерной линии имеется течение, не совпадающее с направлением мерной линии. Однако это мнение неправильно: простые геометрические построения показывают, что в этом случае при управлении судном по ведущему створу так же, как по компасу, судно проходит путь больший, чем расстояние между линиями створов. Именно поэтому выдвигается требование о том, чтобы направление течения совпадало с направлением мерной линии или во всяком случае составляло с ним угол, не превышающий 15-20°.

Створные знаки (рис. 4) мерных линий представляют собой щиты, которые устанавливают на такой высоте, чтобы их хорошо было видно с моря. Обычно передний щит, т. е. щит, расположенный ближе к измерительному участку мерной линии, устанавливается несколько ниже заднего с таким расчетом, чтобы в момент прохождения судна мимо створа щиты перекрывали друг друга, составляя в вертикальном направлении почти одно целое. По середине щитов наносят вертикальные ярко окрашенные полосы, которые также должны быть хорошо видны с моря.


Рис. 4. Створные знаки мерной линии.


Рис. 5. Линейная чувствительность створов.

1 - передний знак створа; 2 - задний знак створа.

Тем не менее наблюдатель, находящийся на судне, пересекающем под прямым углом поперечные створы мерной линии, практически не может абсолютно точно определить момент прохождения линии створа, т. е. момент, когда средние полосы щитов находятся на одной вертикальной прямой, как бы составляя продолжение друг друга.

Величина ошибки при определении момента полного накрытия средних полос щитов створа зависит от так называемой линейной чувствительности створа (рис. 5).

Разрешающая сила нормального глаза равна одной угловой минуте. Нанесем на линии пробега судна по мерной линии (рис. 5) отрезок A1A2, соответствующий одной угловой минуте. В промежутке A1A2 угол между двумя знаками оказывается меньше одной минуты, и, следовательно, любая точка в этом промежутке может служить за отметку начала замера скорости. Величина ОА1=ОА2 называется линейной чувствительностью створа и обозначается в дальнейшем буквой W.

Чтобы найти выражение для W, воспользуемся соотношением
tgα=tg(β-γ). (1.2)
преобразованным к виду

После подстановки в выражение (1.3) значений tg β и tg γ и простых преобразований будем иметь

Первым членом правой части выражения (1.4) можно пренебречь, так как он будет высшего порядка малости по сравнению с двумя последующими. Тогда уравнение (1.4) примет вид
dW = tg αDc (Dc + d), (1.5)
откуда

Заменив тангенс угла дугой и угол значением разрешающей способности глаза, а также введя коэффициент освещенности створа а" (для дневного света α"=2 и для ночного α"=3,5), получим значение линейной чувствительности створа (в метрах)

Где
Dс - расстояние от переднего знака секущего створа до ходовой части мерной линии, м; ао - угол разрешающей способности глаза; d - расстояние между створными знаками, м.

Приведем значения чувствительности секущих створов одной из зарубежных мерных линий:

Если принять чувствительность пары створов равной половине возможной абсолютной ошибки, то относительная погрешность длины мерного участка линии (створы 2-3) будет равна 0,4%.

Как видно из формулы (1.6), для уменьшения ошибки при определении расстояния между створами и, следовательно, увеличения чувствительности створов, необходимо, чтобы отношение Dc: d было как можно меньшим. Однако практически это отношение обычно не бывает меньше трех.

Чтобы оценить влияние ошибки при отсчете времени, а также влияние чувствительности створов и длины линии пробега на результаты измерения скорости, необходимо рассмотреть зависимость скорости судна от пути и времени
ν=s/t (1.9)
где v - среднее арифметическое значение нескольких измерений скорости, м/с; s - среднее арифметическое значение пути, м; t - среднее арифметическое значение времени пробега, с.

Как известно, погрешность результата косвенных измерений (скорость подсчитывается по измеренному пути и времени) слагается из погрешностей результатов каждого прямого измерения, входящего в косвенное. При косвенных измерениях находят относительную погрешность (среднюю квадратическую, вероятную или предельную) каждого прямого измерения и вычисляют суммарную относительную погрешность косвенного измерения. Так, в данном случае

где εν - относительная погрешность измерения скорости, .%; εs - относительная погрешность измерения пути; εt - относительная погрешность измерения времени пробега.

Выражая относительные ошибки через вероятные, получим

или, после подстановки t = s/v .

Где ρs - вероятная погрешность измерения пути, м; ρt - вероятная погрешность измерения времени пробега, с (согласно ρt = 0,5 с). Вероятная погрешность измерения пути

если чувствительность обоих створов принимается одинаковой и равной полусумме их чувствительностей, а число пробегов на режиме равным трем.

Подставив эти значения в формулу (1.12) и преобразовав ее, получим

Таким образом, величина ошибки будет зависеть от трех составляющих: чувствительности секущих створов, длины пробега по мерной линии и скорости судна.

В качестве примера в табл. 3 приведены данные о точности измерение скорости судна на одной из мерных линий. На основании этих данных можно сделать вывод, что измеряемые скорости независимо от скорости судна определяются с большой степенью точности. Так, на участке мерной линии между вторым и третьим створами погрешности при измерении скорости составляют 0,35-0,40%. С увеличением длины мерной линии (участок между первым и вторым створами равен одной миле, между вторым и третьим створами - двум милям и между первым и третьим - трем милям) погрешность измерения скорости резко уменьшается.

Таблица 3. Точность измерения скорости судна на мерной линии, %
Скорость судна, уз Средняя чувствительность створов, м
12,8 (участок между первым и вторым створами) 14,9 (участок между вторым и третьим створами) 13,0 (участок между первым и третьим створами)
8
12
16
20
24
28
32
36
30
0,58
0,59
0,61
0,63
0,66
0,69
0,72
0,75
0,79
0,33
0,34
0,35
0,36
0,37
0,38
0,40
0,42
0,43
0,20
0,20
0,21
0,22
0,22
0,23
0,24
0,25
0,26

Однако это не означает, что пробеги целесообразнее делать на длинных мерных линиях, так как при этом увеличиваются погрешности, вызванные возможной неравномерностью работы главных механизмов на большом промежутке пути и влиянием возмущающих внешних воздействий, приводящих к отклонению курса от прямолинейного.

При назначении длины измерительного участка мерной линии следует также учитывать, что в ходе скоростных испытаний (в случае отсутствия автоматической аппаратуры для регистрации показаний приборов) иногда необходимо не менее восьми-десяти раз измерить крутящий момент на гребном валу или один-два раза снять индикаторные диаграммы, а также несколько раз измерить частоту вращения гребных валов и определить некоторые параметры работы энергетической установки. На все это требуется не менее четырех минут. Таким образом, минимальную длину пробега s на мерной линии, являющуюся функцией времени, необходимого для выполнения указанных измерений и определения скорости судна, можно вычислить по формуле
s = 0,067νs (1.15)
где νs - скорость судна, уз, s - пробег судна, мили.

Размерный коэффициент 0,067 соответствует приблизительно 4 мин, т. е. времени, необходимому для выполнения замеров.

Постоянное знание судоводителем достоверной скорости своего судна является одним из важнейших условий безаварийного плавания.

Движение судна относительно дна со скоростью, называемой аб солютной, рассматривается в навигации как результат сложения вектора скорости судна относительно воды и вектора течения, действующего в районе плавания.

В свою очередь вектор скорости судна относительно воды (относи тельная скорость) является результатом работы судовых движителей и действия на судно ветра и волнения.

В условиях отсутствия ветра и волнения она наиболее просто определяется по частоте вращения винтов.

Знание скорости дает возможность определить пройденное судном расстояние S об в милях:

S об = V об t, (38)

где V об - скорость судна, определенная по частоте вращения винтов, уз; t - время плавания судна, ч.

Однако этот способ неточен, так как не учитывает изменение состояния судна (обрастание корпуса, изменение осадки), влияние ветра и волнения. На скорость судна относительно воды оказывают влияние следующие факторы.

1. Степень загрузки, крен и дифферент судна. Скорость судна изменяется с изменением осадки. Обычно в условиях хорошей погоды судно в балласте имеет несколько большую скорость, чем в полном грузу. Однако с усилением ветра и волнения потери в скорости судна в балласте становятся намного больше, чем судна в полном грузу.

Значительное влияние на изменение скорости оказывает дифферент. Как правило, дифферент на нос снижает скорость. К таким же результатам приводит значительный дифферент на корму. Оптимальный вариант дифферента выбирается на основании опытных данных.

Наличие крена судна вызывает его систематический уход с заданного курса в сторону повышенного борта, что является следствием нарушения симметрии обводов погруженной в воду части корпуса. По этой причине приходится чаще прибегать к перекладке руля для удержания судна на курсе, а это в свою очередь ведет к уменьшению скорости судна.

2. Ветер и волнение обычно действуют на судно одновременно и, как правило, вызывают потери в скорости. Встречные ветер и волнение создают значительное по силе сопротивление движению судна и ухудшают его управляемость. Потери в скорости в этом случае могут быть значительны.

Ветры и волнение попутного направления снижают скорость судна в основном за счет резкого ухудшения его управляемости. Лишь при слабом попутном ветре и незначительном волнении у отдельных типов судов наблюдается небольшое увеличение скорости.

3. Обрастание корпуса наблюдается при плавании судов в любых условиях как в пресной, так и в соленой воде. Наиболее интенсивно обрастание происходит в теплых морях. Следствием обрастания является увеличение сопротивления воды движению судна, т.е. снижение скорости. В средних широтах через шесть месяцев уменьшение скорости может достигать 5 - 10%. Борьба с обрастанием ведется путем систематической очистки корпуса судна и его окраски специальными не
обрастающими красками.

4. Мелководье. Влияние мелководья на уменьшение скорости судна
начинает сказываться при глубинах в районе плавания

H 4T cp + 3V 2 /g,

где Н - глубина, м.

Т cp , - средняя осадка судна, м;

V - скорость судна, м/с;

g - ускорение силы тяжести, м/с 2 .

Таким образом, определенная для конкретных условий плавания зависимость скорости судна от частоты вращения винтов под влиянием перечисленных факторов будет нарушена. В этом случае расчеты пройденного судном расстояния, выполненные по формуле (38), будут содержать значительные ошибки.

В практике судовождения скорость судна иногда рассчитывают, используя известную зависимость

V=S / t,

где V - скорость судна относительно грунта, уз;

S - расстояние, пройденное с постоянной скоростью, мили; t - время, ч.

Учет скорости и пройденного судном расстояния осуществляется наиболее точно с использованием специального прибора - лага.

Для определения скорости судна оборудуются мерные линии, к районам расположения которых предъявляются следующие требования:

отсутствие влияния мелководья, что обеспечивается при минимальной глубине, определяемой из соотношения

Н/Т 6,

где Н - глубина района мерной линии, м; Т - осадка судна, м;

защищенность от господствующих ветров и волнения;

отсутствие течений или наличие слабых постоянных течений совпадающих с направлениями пробегов;

возможность свободного маневра судов.

Рис. 23. Мерная линия

Оборудование мерной линии (рис. 23), как правило, состоит из нескольких параллельных секущих створов и одного ведущего, перпендикулярного к ним. Расстояния между секущими створами вычисляются с высокой точностью. В большинстве же случаев линия пробега судов обозначается не ведущим створом, а выставленными вдоль нее буями или вехами.

Обычно замеры делаются при полной загрузке и в балласте для основных режимов работы двигателей. В период выполнения замеров на мерной линии ветер не должен превышать 3 баллов, а волнение - 2 баллов. Судно не должно иметь крена, а дифферент должен быть в оптимальных пределах.

Для определения скорости судну необходимо лечь по компасу на курс, перпендикулярный линиям секущих створов, и развить заданную частоту вращения движителей. Измерение продолжительности пробега обычно производится по показаниям трех секундомеров. В момент пересечения первого секущего створа пускают секундомеры и через каждую минуту замечают показания тахометров. Секундомеры останавливаются с пересечением второго секущего створа.

Рассчитав среднее время продолжительности пробега по показаниям секундомеров, определяют скорость по формуле

V = 3600S/t, (39)

где S - длина пробега между секущими створами, мили;

t - средняя продолжительность пробега между секущими створами, с; V - скорость судна относительно грунта, уз.

Частота вращения движителей определяется как среднее арифметическое значение из показаний тахометров за время пробега.

Если в районе мерной линии отсутствует течение, то скорости относительно грунта и воды равны. В этом случае достаточно сделать всего один пробег. При наличии в районе маневрирования постоянного по направлению и скорости течения необходимо делать два пробега в противоположные стороны. Относительная скорость судна V 0 и частота вращения движителей п в этом случае будут определяться по формулам:

Vo=(V 1 +V 2)/2, (40)

n=(n 1 + n 2)/2, (41)

Рис. 24. График зависимости скорости от частоты вращения движителей


где V 1 , V 2 - скорости судна относительно дна на первом и втором пробегах; n 1 и n 2 - частота вращения движителей на первом и втором пробегах.

При действии в районе мерной линии равномерно меняющегося течения рекомендуется делать третий пробег в том же направлении, что и первый, а скорость, свободная от влияния течения, рассчитывается н о приближенной формуле

V 0 = (V 1 + 2V 2 + V 3)/4. (42)

Если же характер изменения течения неизвестен или желают получить более точный результат, то делают четыре пробега и скорость рассчитывают по формуле

V 0 = (V 1 + 3V 2 + 3V 3 +V 4)/8. (43)

Средняя частота вращения движителей в этих случаях рассчитывается для трех и четырех пробегов соответственно:

n = (n 1 + 2n 2 + n 3)/4; (44)

n = (n 1 + 3n 2 + 3n 3 +n 4)/8. (45)

Таким образом определяют скорость и частоту вращения движителей для нескольких режимов работы главных двигателей в грузу и в балласте. По полученным данным строят графики зависимости скорости от частоты вращения движителей при различной загрузке судна (рис. 24).

На основании данных графиков составляется таблица соответствия скорости хода частоте вращения гребных винтов или таблица соответствия частоты вращения винтов скорости судна.

Если по результатам прохождения мерной линии известна какая-либо скорость и соответствующая ей частота вращения винтов, то можно рассчитать значение скорости для любого промежуточного значения частоты вращения винтов по формуле Афанасьева

V И =V 0 (n 1 /n 0) 0, 9 , (46)

где V 0 - известная скорость при частоте вращения движителя п 0 ; V И, - искомая скорость для частоты вращения движителя n 1 .

Таким образом, определив скорость своего судна по графику зависимости ее от частоты вращения винтов, можно рассчитать пройденное расстояние в морских милях по формуле

где V 0 - скорость судна, уз; t - время плавания, мин.

Если же известно пройденное расстояние, то расчет времени плавания выполняется:v

По этим формулам составлены таблицы «Расстояние по времени и скорости» и «Время по расстоянию и скорости» в МТ - 75 приложения 2 и 3 соответственно.

Расчеты пройденного расстояния с использованием скорости, определенной по частоте вращения винтов V o6 , выполняются лишь при отсутствии лага или для контроля его работы.

определитель скорости судна

Альтернативные описания

. (английское «запаздывание») разрыв во времени между двумя явлениями

Показатель, отражающий отставание или опережение во времени одного явления по сравнению с другими

Навигационный прибор

Прибор для определения скорости хода судна и пройденного расстояния

Союз арабских государств (аббревиатура)

Спидометр корабля

Спидометр морского судна, ничего общего с болезнью СПИД не имеющий

Судовой прибор для определения пройденного судном расстояния

Балка под полом

Судовой спидометр

Прибор для определения скорости судна

Спидометр на яхте

Борт судна

. «спидометр» на шхуне

. «спидометр» на корабле

Временной «зазор»

Судовой прибор

. «спидометр» на судне

Запаздывание

Судовой «узломер»

Морской аналог спидометра

Корабельный прибор

Измеритель морских узлов

Спидометр

В авто спидометр, а что на корабле?

Измеряет скорость судна

Корабельный «спидометр»

Спидометр судна

Прибор для определения скорости судна

Прибор для измерения скорости судна

Разрыв во времени между явлениями

. "Спидометр" на корабле

. "Спидометр" на судне

. "Спидометр" на шхуне

. "Спидометр" на яхте

В авто спидометр, а что на корабле

Временной "зазор"

Корабельный "спидометр"

М. морск. одна сторона, бок корабля, относительно к пушкам; палить лагом, из всех орудий одной стороны. Относительно к водяным бочкам: слой, ряд. Снаряд для измеренья скорости судна: деревянный треугольничек бросается стойком в воду, на бечевке, размеренной на узлы

Судовой "узломер"

. (английское "запаздывание") разрыв во времени между двумя явлениями

Определение скорости хода судна по режиму оборотов винта.

Для измерения скорости больших судов используют лаг. На малых судах простой лаг дает большие ошибки в определении скорости и его не всегда можно применить. Поэтому для маломерных судов проще определять скорость хода по таблицам или графикам, выражающим зависимость скорости от числа оборотов винта. Чтобы иметь такие таблицы или графики, нужно определить для разных оборотов винта скорость хода судна на мерной линии (рис. 59). Определение скорости производят в благоприятную погоду. Рыскание судна на курсе не должно превышать ±2°.


Рис. 59. Схема оборудования мерной линии

Мерная линия оборудуется ведущим створом, по которому судно держит курс, и четырьмя или более секущими створами, расстояния между которыми точно измерены. Скорость судна на мерной линии измеряется при постоянном режиме работы двигателя. Чтобы исключить ошибки в определении скорости от влияния ветра и течения, на одном и том же режиме работы двигателя делают два пробега - в одну и другую стороны.

По секундомеру замечают момент прохождения судном секущих створов. Зная время t 1 , t 2 , t 3 и расстояния между секущими створами S 1 , S 2 , S 3 , скорость V S рассчитывают по формуле:

V S = S

где: V S - скорость судна в узлах;

S - расстояние между секущими створами в милях;

t - время прохождения от створа до створа, сек.

Во время каждого пробега важно точно держать заданное число оборотов двигателя. Вычислив отдельные скорости V 1 , V 2 , V 3 , находят среднюю.

После определения скорости на мерной линии строится таблица или график зависимости скорости судна от числа оборотов двигателя (рис. 60).

Скорость судна полезно определить при разной осадке. Тогда графиков и таблиц будет несколько. Их можно для удобства пользования изобразить на одном листе бумаги. Имея на судне такие таблицы или графики, можно по заданному числу оборотов двигателя и известной осадке найти соответствующую скорость судна.

Иногда оборудованной мерной линии нет поблизости. Однако всегда можно для определения скорости хода судна выбрать два береговых ориентира, расстояние между которыми достаточно точно известно. Эти расстояния можно определить, например, по плану, на котором имеются оба ориентира.

Ведущие створы могут быть заменены компасом на судне, если нет опасения, что судно будет сноситься с курса ветром или течением, для этого необходимо проверить и устранить влияние работающего двигателя на компас.

Для измерения скорости хода судно должно проходить прямым курсом по безопасному для плавания пути.



Puc . 60. График зависимости скорости судна от числа оборотов двигателя

Направление прямой, соединяющей предметы, может быть определено при помощи компаса, но необходимо чтобы пробеги можно было производить по направлению, параллельному прямой, соединяющей предметы.

Заблаговременно до подхода к первому ориентиру судно развивает определенную скорость и выходит на мерный курс на заданных оборотах двигателя, которые во время пробега до второго ориентира остаются постоянными. Когда первый ориентир будет на траверзе, пускается секундомер или замечается время по часам. Отсчет времени производится в момент прохождения судном траверза второго ориентира. Такие же наблюдения производятся при обратном пробеге.

§ 27. Упрощённый метод определения скорости судна.

Если невозможно, особенно во время плавания, определить скорость судна одним из вышеописанных способов, применяют иной, правда, менее точный. Нужно на ходу с носа судна бросить в воду временный ориентир - небольшой кусок дерева и одновременно включить секундомер. Когда кусок дерева достигнет среза кормы, секундомер останавливают. По измеренному времени и известной длине судна скорость находят по формуле:

V S = ,

где V S - скорость судна в узлах;

L - длина судна, м;

t - время прохождения брошенного в воду предмета, сек.

Следует иметь в виду, что чем короче судно, тем больше будет погрешность.

При определении пройденного расстояния нужно помнить, что перемещение судна происходит только относительно воды, а не грунта. Ветер и течение при этом не учитываются, хотя постоянно влияют на скорость движения судна. Поэтому при ведении прокладки в рассчитанное по скорости расстояние нужно ввести поправку за счет сноса течением и ветром. Легче всего это сделать, когда курс судна совпадает с направлением течения и ветра или противоположен им. При боковых сносах увеличение или уменьшение скорости будет приблизительно пропорционально косинусу угла между курсом судна и линиями действия течения или ветра.

Главные причины уменьшения скорости хода судна:

1) мелководье, на котором по мере увеличения скорости резко возрастает сопротивление воды. Поэтому на мелководье скорость может уменьшаться на 10 - 15%;

2) ветер и качка. При встречных ветрах и волне, а также при сильных попутных ветрах, сопровождаемых волнением, скорость уменьшается.

При слабых попутных ветрах скорость незначительно возрастает. Снижение скорости наблюдается при перегрузке судна, крене и дифференте на нос. На волне в моменты, когда винт выходит из воды, судно резко теряет ход;

3) обрастание подводной части корпуса судна приводит к уменьшению скорости на 10 - 15% по сравнению со скоростью судна, имеющего чистый корпус.

В нашей жизни скорость передвижения транспортных средств измеряется в километрах в час (км/час). Так характеризуется движение автомобиля, поезда, самолета. Но из этого правила есть одно исключение. В морской навигации скорость движения судна обозначается в узлах. Эта единица измерения не входит в Международную систему СИ, но традиционно допускается для использования в мореходстве.

Измерение быстроходности судов

Такой порядок сложился исторически. Когда-то быстрота движения судна определялась при помощи специального прибора, который назывался секторный лаг . Он представлял собой доску, на конце которой был закреплен линь - тонкий корабельный трос. На всем его протяжении через равные промежутки были завязаны узлы. Моряк, касаясь троса рукой, подсчитывал количество узлов, прошедших через его руку за определенное время, определяя таким способом скорость сразу в узлах. Важно, что при этом способе не требовалось производить никаких дополнительных расчетов.

Лагами подобной конструкции уже давно никто не пользуется. Сейчас для измерения скорости морских судов применяют приборы на основе последних научных и технических достижений в области гидроакустики и гидродинамики. Популярностью пользуются измерители на основе эффекта Доплера . Существуют и более простые способы - при помощи специальных металлических вертушек, помещенных в воду. В этом случае скорость определяется исходя из количества их оборотов в единицу времени.

Морская миля

В переводе на обычный язык один узел означает скорость, с которой корабль проходит за час одну морскую милю. Поначалу ее величина равнялась 1853,184 метра. Именно такова длина поверхности Земли по меридиану в одну угловую минуту. И только в 1929 году Международная конференция в Монако установила длину морской мили в 1852 метра.

Необходимо помнить, что, кроме морской мили, существуют и другие. В прошлом в разных государствах в качестве единиц измерения длины существовало несколько десятков различных миль. После введения метрической системы мер мили в качестве единицы измерения расстояний стали стремительно терять популярность. Сегодня из всего многообразия сухопутных миль осталось лишь около десяти. Самой распространенной из них является американская миля . Ее длина составляет 1609,34 метра.

К длине земного меридиана привязана не только морская миля. Старинная французская мера длины морское лье равняется 5555,6 метрам, что соответствует трем морским милям. Интересно, что, кроме морского лье, во Франции существовало еще сухопутное, также привязанное к длине меридиана, и почтовое лье.

Правила перерасчета скорости

Сегодня быстроходность морских судов все так же измеряется в узлах. Для того чтобы представлять эту характеристику в привычной для нас форме, необходимо переводить их в километры в час. Это можно сделать несколькими способами :

  1. Просто умножить количество узлов на 1,852 любым доступным способом, например, используя калькулятор.
  2. Сделать примерный расчет в уме, умножив количество узлов на 1,85.
  3. Применить специальные таблицы перевода из интернета.

Сделав подобный перерасчет, легко сравнить между собой скорости движения морских судов и других транспортных средств.

Рекордсмены среди судов

Быстроходность морских пассажирских судов обычно выше, чем торговых. Последний официальный рекорд («Голубая лента Атлантики») принадлежит американскому скоростному трансатлантическому лайнеру «Юнайтед Стейтс» . Он был установлен в 1952 году. Тогда лайнер пересек Атлантику со средней скоростью 35 узлов (64,7 км/час).

Печально знаменитый «Титаник» в своем единственном рейсе в момент столкновения с айсбергом в ночь с 14 на 15 апреля 1912 года шел практически на пределе своих технических возможностей со скоростью 22 узла. Наивысшая тогда скорость пассажирских лайнеров («Мавритании» и «Лузитании») равнялась 25 узлам (46,3 км/час).

Вот некоторые из морских судов, бывшие когда-то обладателями «Голубой ленты Атлантики»:

  1. «Грейт Вестерн» (Великобритания) в 1838 году.
  2. «Британия» (Великобритания) в 1840 году.
  3. «Балтик» (Великобритания) в 1873 году.
  4. «Кайзер Вильгельм дер Гроссе» (Германия) в 1897 году.
  5. «Лузитания» (Великобритания) в 1909 году.
  6. «Рекс» (Италия) в 1933 году.
  7. «Куин Мери» (Великобритания) в 1936 году.

Существует отдельная категория судов - на подводных крыльях, которые используются для пассажирских перевозок и береговой охраны. Они могут развивать скорость свыше 100 км/час (60 узлов), но их область применения в море сильно ограничена исключительно прибрежной зоной и низкими экономическими характеристиками.

Смена приоритетов

С развитием авиации подобное активное соперничество среди океанских пассажирских судов потеряло свою актуальность. Пассажиры для пересечения Атлантики стали отдавать предпочтение самолетам, а судовладельческим компаниям пришлось переориентироваться на обслуживание туристов. Для круизных лайнеров важнейшими показателями стали надежность, комфортабельность и экономическая эффективность.

Оптимальная скорость современных океанских круизных теплоходов составляет обычно от 20 до 30 узлов, а для грузовых судов - примерно 15 узлов. Рекордное для того времени достижение «Юнайтед Стейтс» так и осталось наивысшим в истории. Для торговых судов приоритетными показателями сегодня являются прежде всего экономические. Погоня за рекордами окончательно ушла в прошлое.

Видео

В этой видеоподборке вы найдете много интересной информации по поводу измерения скорости морского транспорта.